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Abstract

With point of reference in a theoretical problem, parallel program-
ming is discussed. The theoretical problem is to describe the mean
number of points and neighbours in a Strauss point process as a func-
tion of the three parameters. The problem is embarrassing parallel.
Emphasis is given on describing the construction of a parallel program
and explaining the code. Monte Carlo methods are used for handling
point processes. Some technical details are given.

1. Introduction

Recently the Laboratory for Computational Stochastics bought 16 PC’s with
each 2 CPU’s. By connecting the computers we have a so-called Beowulf
cluster consisting of 32 CPU’s. Our cluster was named Beostar. Such a
cluster can be used for parallel programming.

In order to get some hand-on experience using Beostar, we launched a
project using an all-ready existing C++ library for handling point processes.
The objective was then to write the surrounding MPI code to administer the
parallel environment (Message Passing Interface, see Snir et al. (1996)).

This report describes the project and the theoretical results. Emphasis
is given on the technical part describing the parallel program thoroughly
and the sequential program in some detail. The sequential program enters
as an isolated part of the parallel program and the parallel program can
therefore with a few changes be modified for solving other problems which
are embarrassing parallel.

All programs, sequential as well as parallel, were developed by the writer
and are available for scientific purposes on www.imf.au.dk/stoclab and
come with following disclaimer: All use at own risk — no guarantees given.

In Section 2 the background for the project is found. We give a short
introduction to point processes, in particular the Strauss point process, which
is the model to be studied. We want to make a table for the mean number
of points and mean number of neighbours for varying parameters. In Section
3 a sequential program for doing this is presented. In Section 4 some initial



investigations of the sequential program is discussed before we in Section 5
discuss how the sequential program can be parallelised. The parallel program
is given together with technical explanations of the standard MPI procedures
used. In Section 6 the results of the investigation is discussed. Issues of
future interest are discussed in Section 7.

In Appendix A we find some background on Monte Carlo techniques
used for simulating in point process models, including an example of the
Metropolis-Hastings birth-death algorithm. In Appendix B the loess algo-
rithm for local estimation of surfaces is given. Appendix C gives some practi-
cal instructions for using Beostar. In Appendix D we find a result concerning
scaling of point processes.

2. Background: Point processes

Data sets consisting of positions of events or objects are often observed in na-
ture. Examples are the positions of detected a—particles generated by decay
of Radon gases (Stoyan et al., 1995, Figure 2.5), stain centres in methylene-
blue coloured clay observed in a horizontal slice (Lieshout, 2000, Figure 1.1),
position of cells in tissue (Ripley, 1977, Figure 2) and (Nielsen, 2000, Figure
1), position of trees in a forest (Diggle, 1983, Figure 1), (Ripley, 1977, Figure
10), (Ogata and Tanemura, 1986, Figure 1), and (Stoyan and Stoyan, 1998,
Figure 1), or bronze particles in a filter (Hahn et al., 2001, Figure 1). Notice
that all these examples are planar point patterns. Point patterns may also be
observed in 1 or 3 dimensions or on the surface of a body. Data might even
be of higher dimensions if e.g. the point pattern consists of vectors of various
data as in multivariate statistics. However, typically the points represent
positions.

Point process models are stochastic models for point patterns. The point
process model chosen to describe a given point pattern must be able to de-
scribe the characteristics of the pattern. There are two main types of char-
acteristics: Homogeneity and interaction. A point pattern is homogeneous if
the distribution of the points is translation invariant meaning that the point
pattern on average looks similar in different areas. This implies e.g. that the
mean number of points in an area is the same if the area is translated. In this
report we only consider homogeneous point patterns. If a point pattern is not
homogeneous we call it inhomogeneous. For more details on inhomogeneous
point process models, the reader may consult e.g. Jensen and Nielsen (2001)
or Nielsen (2001) and references therein.

Interaction is when the positions of points are not independent. Thus,
the position of one point depends on the positions of the other points in the
realization. There are two main types of interaction: Clustering and inhibi-



tion. Clustering is when the point process model favour point patterns where
the points lie in clusters. Thus, there are many small distances between the
points. Inhibition (regularity) is when the point process model favour point
patterns where the points do not lie close to one another. There are few
small distances between the points in the patterns. By considering distances
between points in the pattern to either other points in the pattern or to ar-
bitrarily chosen points, it is possible to make a non-parametric distinction
between clustering and inhibition where the homogeneous Poisson point pro-
cess serve as the division between the two types of interaction. See Diggle
(1983), Stoyan et al. (1995), and Baddeley and van Lieshout (1995) for more
details. The homogeneous Poisson point process model is also called the
model of complete spatial randomness since all the points are independently
and homogeneous distributed. Hence, this way we also get a non-parametric
test of the hypothesis of complete spatial randomness.

Among the examples mentioned above, the point pattern in Ripley (1977,
Figure 2) is clearly regular and homogeneous, see e.g. Baddeley and van
Lieshout (1995) where the J function is plotted for these data. The point
patterns in Stoyan et al. (1995, Figure 2.5) and Diggle (1983, Figure 1) are
also homogeneous with a tendency of inhibition. However, a homogeneous
Poisson point process might be sufficient in both cases. The latter point
pattern has also been analysed in Baddeley and van Lieshout (1995). Exam-
ples of homogeneous clustered point patterns can be seen in Lieshout (2000,
Figure 1.1) and Ripley (1977, Figure 10). The latter is also analysed in Bad-
deley and van Lieshout (1995). The point patterns in Stoyan and Stoyan
(1998, Figure 1), Nielsen (2000, Figure 1), and Hahn et al. (2001, Figure 1)
are regular and inhomogeneous. Finally, we see a clustered inhomogeneous
point pattern in Ogata and Tanemura (1986, Figure 1). However, for this
data set an inhomogeneous Poisson model might also be sufficient.

In this paper we will consider the Strauss point process which is the most
commonly used point process model for point patterns showing inhibition.
For other models and models describing clustering, good places to look is
Baddeley and Mgller (1989) and Geyer (1999). Notice that it is not always
evident to differentiate between interaction and inhomogeneity. As an ex-
ample, see Brix and Mgller (1998), where clustering is modelled using an
inhomogeneous Poisson point process with a stochastic intensity function.

2.1. The Strauss point process

Let X C R™ be a full-dimensional bounded subset. In the rest of the paper
X = [0;1] x [0;1], the unit square. We will let X denote a point process
on X and use x for a realization of the point process. Since realizations are



point patterns, the state space of X is €2y, which is the set of all finite point
patterns on X. The Greek letters n and & denotes single points.

A Strauss point process X on X' (Strauss, 1975) has density (with respect
to the unit rate Poisson point process) of the form

f@) = e(B,,m) 8"y @, € Qa, (1)

where n(z) is the number of points in the point pattern z and

si@) =Y ln—¢&l<r)

{n¢}Cx

is the number of pairs of points in z with a distance smaller than r. Such
pairs are also called neighbours, which comes from the fact that the Strauss
process belongs to the class of Markov point process models, cf. Ripley and
Kelly (1977). Thus, the density depends on the number of points and the
number of neighbours in the realization. The model has three parameters

(B,7,7) € (0;00) x (0;1] x [0; 00).

From the density we see that « controls the strength of the interaction, since
the density is punished with a factor v for each pair of neighbours in the
point pattern z. Thus, the smaller the 7, the fewer neighbours we expect
and the more inhibition there will be between the points in the realizations
of the model. When v =1 we have the Poisson model (no interaction). The
parameter r controls the range of interaction, where r = 0 is the Poisson
model. The last parameter 4 controls the number of points. However, the
situation is more complicated than this, see Figure 1 where realizations are
shown for various values of the parameters § and 7. The number of points
increases in [ as well as in v, and the number of neighbours also increases in
[ simply because the number of points increases. Furthermore, the number
of points decreases and the and the number of neighbours increases if the
interaction distance r is increased.

It is of interest to explore the dependence between the parameters and
the expected number of points and neighbours, i.e. to describe the functions,

(ﬂ,’)/,T) — Eﬁ,'y,'rn(X)a (2)
(ﬂ,’)/,T) — Eﬁ,’y,'rsr(X)-

For y =1 or r = 0 X is the Poisson model with intensity 3 and

Egqrn(X) = 8. (3)

[Tilsvarende resultat for EsX (afh af beta og r)?]
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Figure 1: Strauss point processes on X = (0;1)? with fixed » = 0.05



For v € (0;1) and r > 0 it is not possible to compute the means (2) in
terms of the density function (1) since the constant ¢(3,7,r) is intractable.
It is not even possible to approximate this constant. The constant depends
on the parameters, so it is essential when we want to study the behaviour
of the means as functions of the parameters. Instead we approximate the
means for a given value of (3,,r) by simulating under the model and then
approximate the means by sample means.

2.2. Mazimum lLikelihood analysis
Apart from exploring the dependence of the parameters, there is also another
reason that we want to tabulate the means of the number of points and
neighbours in the Strauss model.

When 7 is fixed the density (1) is of exponential family form. It can be
shown, that the maximum likelihood estimate of (53, ) based on an observed
point pattern x, is then the unique solution to the equations

Epoen(X) =n(@) and Eg.s,(X) = s(2), (4)
see e.g. Geyer (1999). Thus, suppose we have a table

(6171 T) — (Eﬂa%rn(X)aEﬂa%Tsr(X)) (5)

for all values of 3, v, and r. Then given r, we can find the unique entry
where

(E g, n(X), B ,r 87 (X)) = (n(2), 5, (2)),

which gives us the maximum likelihood estimate of # and ~.
It is interesting to investigate how much these estimates depends on the
choice of r. By varying r, we find a function

~

r = (n(x), s, () = (6(r),7(r))- (6)

If r is not known, the maximum likelihood estimates are the value of r,
and the corresponding values (6), which maximizes the partially maximized
likelihood function,

L(r;z) = maxL(8,7, ;) = L(B(r),4(r),r; 2).
Y

Here we gain from having tabulated the function (6).

Thus, an important aspect of doing likelihood inference in the Strauss
process, no matter if 7 is known or not, is to find the values of (3,+) that
solves the equations (4). To do this we have to simulate for various val-
ues of ((3,7) until the simulated sample means of the number of points and
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neighbours are close enough to the observed values. Hence, by tabulating
these means once and for all, we can save this time consuming step of the
estimation procedure. Furthermore we get the opportunity to explore how
the means depend on the parameters and how, and more importantly, how
much the maximum likelihood estimates of (3, ) changes for varying r.

3. Sequential program

In this section we consider a sequential program that computes the functions
(2). We can only get point-wise approximations of the means, and therefore
we make a grid of (3,7, r) values and determine the values of the means in
each grid point. Such a grid has of course to be chosen large enough to cover
all realistic point patterns, see Figure 1, and fine enough such that the values
between the grid points can be realistic approximated. We will return to this
in Section 4. Given a grid has been constructed, the sequential program
for tabulating the functions (2) in the grid points takes form as sketched
in Figure 2. For each value of (f3,7,7), (2) are approximated as sample
means over nsamp realizations from the Strauss point process with parameters
(8,7, r). This is what happens in the lines 4-12 in the program. In the lines
6-8, one realization from the Strauss process is simulated by running nburn
steps in a Metropolis-Hastings Birth-Death (MHBD) algorithm starting with
the empty point configuration. See Appendix A.1 for further explanations,
where also the algorithm for a single step in a MHBD algorithm is given (line
8).

for ( (B,v,r) € grid )
{
initialize (8, v, )
for (i = 0; i < nsamp; i++ )
{
T; = @
for ( j = 0; j < nburn; j++ )
run z; 1 step in MHBD algorithm
save n(z;) and s, (z;)
}
Egqrn(X) = nsimp dimr (i)
) E g 50(X) = nsimp >y sr(wi)

Figure 2: Sequential program for computing the means (2).




3.1. First time saving operation

The nsamp samples used to approximate the means have to be independent
of each other, hence, the procedure sketched in Figure 2, where we start
simulating from scratch for each sample, seems to be the ideal solution.
However, one of the real time consuming parts of this program is that we
have to run nburn steps, which typically is a very large number, in the
MHDB algorithm before we can be sure that we have reached equilibrium
(see Appendix A.1). A very common way to obtain many samples from a
distribution is to draw the samples from the same chain, cf. e.g. Geyer (1999).
First we run a chain nburn steps in order to reach equilibrium. After that,
we get pseudo-independent samples by resume with running the same chain
and sample every nspac’th sample. This is illustrated in Figure 3. Letting
nburn= 50000, nsamp= 200, and nspac= 1000, we need to go 2.5 - 10° steps
in a MHDB algorithm. Using the option from Figure 2, the number of steps
is 107. Thus, we save a factor 40 in time (approximately, since the first steps
in a chain will run faster).

Between the grid points, we change the parameters and it is therefore
not possible to sample from one chain for all the grid points. However, we
could let the chain start in a neighbouring grid point with the same value
of r. Then it would probably not take that long to reach equilibrium. This

for ((§,7,7) € grid)
{
initialize (8, v, )
z=10

for (i = 0; i < nburn; i++ )
run z 1 step in MHBD algorithm
for (1 = 0; i < nsamp; i++ )

{
for ( j = 0; j < mspac; j++ )
run x 1 step in the same MHBD algorithm
save n(z;) = n(z) and s,(z) = s.(z;)
}
Epn(X) = o e 1(70)
B 5 50(X) = qoamp 2ot 5r(1)
}

Figure 3: Sequential program replacing the program in Figure 2. Here we sample using
spacing.




is however not a large time saving factor. In the example above, the factor
is at most 1.25. Considering the extra programming work and storage space
involved, this is really not worth while.

3.2. Perfect simulation

In theory the chain is known to reach equilibrium after infinitely many steps.
A problem with the above procedure is therefore that we can never be really
sure that we have reached equilibrium. Furthermore, different burn-in times
are most likely necessary for different parameter values. A way to solve this
problem is to use perfect simulation, cf. ?. In perfect simulation, the sample
is drawn from time zero supposing that the chain was started in time minus
infinity. Thus, in time zero we can be sure to have reached equilibrium and
can start the sampling using spacing as before.

The trick using perfect simulation is that by constructing the algorithm
in some smart way, we only need to look back finitely many steps because at
a certain point, using the same random numbers, any point configuration will
end up in the same point configuration at some time before zero (coalescence).
Thus, we have but one point configuration at time zero which then is the
perfect sample drawn from the chain in equilibrium.

Implementing perfect simulation would involve replacing the lines 5-6
in the program in Figure 3. Such an algorithm have at present not been
implemented. Notice that the time saving factor is not large, if any.

4. Initial investigations of the sequential program

The functions (2) were tabulated for = 0.05 fixed and for various values of
(B,7) in a grid.

In Figure 4 the simulated values of E g, ,n(X) and Eg , , s, (X) are plotted
against the grid point values of (5, ). The data points are plotted as surfaces
with lines connecting neighbouring grid points. The corresponding level plots
are shown below.

First we observe that the theoretical result (3) holds. v = 1 corresponds
to the line hitting the back wall of the upper plot in Figure 4 (a). This line
is approximately increasing with unit rate. Furthermore, the mean number
of points increases in # and in 7 as expected, and so does the mean number
of neighbours.

In Figure 5 the point-wise difference between the means resulting from
two separate runs with » = 0.05 have been plotted. The differences are not
large relatively to the absolute values.

The fluctuations in the data surfaces are believed to be a consequence of
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Figure 4: Point-wise plots of the functions (2) for fixed » = 0.05 with lines connecting grid
point values. Lower plots are level plots.

the approximation. In Figure 6 the data have been smoothed using the local
smoothing algorithm loess (local regression, see Appendix B). The difference
between the smoothed surfaces and the data surfaces is approximately con-
stant and 0, see Figure 7 where the differences have been plotted. No areas
have larger fluctuation (relative to the absolute numbers).

Thus, since the fluctuations in the data plots are very small, we conclude
that the chosen values of nburn = 50000, nsamp = 200, and nspac = 1000

in the MHDB algorithm are sufficiently large, and that the tabbing between
the grid values used in Figure 4,

B € {5,25,45,65,...,485}

v € {0.01,0.04,0.07, ...,1.00}
does not need to be closer. Many different grids of various sizes have been
tried out and also non-regular grids where the grid point distances were

smaller where the surfaces were expected to vary more. We concluded that
the regular coarse grid used in Figure 4 produced nice and smooth surfaces.

10



20

‘
‘a‘ﬂlmz’ W )

R

<

I | Jy A ‘/’ V”v_ff»:
\ﬁ“. \

10

VA,
SIS
<=

& AN B
RS RN A AP
7

0

0% 1
AN AL ViAW
Y

<>
S
S
LSS
S
SSCSIS SIS OSISSSS

20 -10

1.0

0.8

0.0

(a) Eg,y,»n(X) residuals (b) Eg,y,rsr(X) residuals

Figure 5: Point-wise differences between data from two separate runs computing (2) with
r = 0.05 fixed. The two runs were from the sequential and parallel program, respectively.

However, the upper bound of 5 need to be increased to get point patterns
with more points when the interaction is strong, see Figure 1.

For exploring the surfaces, it is sufficient to consider the data plots as
in Figure 4. We do not gain much information about the behaviour by
smoothing. However, for maximum likelihood estimation of (3,v,7) in the
Strauss point process, we use the smoothed surfaces in Figure 6 since we
believe that the true mean surfaces are smooth and we therefore expect to
get a better results by smoothing.

5. Embarrassing parallel program

Suppose we have a problem that can be split up into several minor problems,
henceforth called jobs, which can be solved independently of each other and
in any order. By running the jobs on n different CPU’s, we in principle get
a factor n speed-up. A program that administer the allocation of the jobs
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Figure 8: The communication structure in an embarrassing parallel program.

on different CPU’s and collect the results, is an embarrassing (or perfect)
parallel program.

Such a program can be run on a Beowulf cluster computer and typically
has the following structure. One CPU will be reserved to administer the
allocation of jobs and to collect all the results. This is henceforth called the
master CPU. The other CPU’s, called slaves, do the actual work. Commu-
nication is between master and the slaves only. There is no communication
between the slaves. The master gives a slave a job which the slave solves and
report back to the master and gets a new job until all the jobs have been
solved. See illustration in Figure 8.

Notice that parallel programming can also be used when the minor prob-
lems depend on each other and exchange of information is needed between
the slaves. This is however much more complicated. See Pancake (1996) for
more information on parallel programming in general.

5.1. Parallelising for point processes

As mentioned in Section 2.1, the density of a point process is in general
intractable and therefore we need to use iterative methods such as Monte
Carlo techniques when working with point processes, see Appendix A where
these methods are briefly introduced. In general, Monte Carlo methods in-
volves drawing independent realizations from the same distribution and from
the distribution with various parameter values. Thus, the same operation,
drawing a realization, is performed over and over.

A natural thought is therefore to let one job consist of drawing one sample.
However, as discussed in Section 3.1, we can save a lot of computing time
by drawing samples from the same Markov chain. In the particular example,
we saved a factor 40. By parallelising where a job is drawing one sample, we
save a factor 31 on Beostar (32 CPU’s where one is the master). Thus, even
though a Beowulf cluster provides us with a huge amount of computer power,
it is important still to optimize the sequential algorithm before beginning to
parallelise. If the optimization blocks for the parallelising, one must consider
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Figure 9: The CPU time is plotted against the simulated expected number of points (the
sample average). The parameter r = 0.05 is fixed and (3,) varies.

which solution gives the best speed-up.

5.2. Parallelising the current problem

To solve the current problem, to tabulate the functions (2) for different values
of (8,7,r), we first draw nsamp realizations from the same distribution in
order to form the means for one value of (3,7, r). This is done for each value
of (8,7, r) in the grid. As discussed above, the part where the realizations
are draw from the same distribution can be speeded up by sampling from
the same Markov chain. Since the steps in the chain subsequently depend
on each other, parallelising these steps is not feasible. Instead we parallelise
the grid points. Thus, one job consist of computing the means for a given
value of (3,7,r). This is the content of the outer loop (lines 3-14) of the
sequential program in Figure 3. For simplicity, this job is made into a single
procedure

estimate_means( nburn, nsamp, nspac, EnX, EsX)

in the C++ library handling point processes. The resulting means are put into
the last two entries.

In Section 4 we studied the sequential program for » = 0.05 fixed. The
CPU times were measured for each job. The time is linearly dependent
on the number of points in the patterns, see Figure 9 where the simulated
expected number of points is plotted against the CPU time. This comes
as no surprise since the work that has to be done (count the number of
neighbours to one point) is proportional to the number of points in the given
point configuration.

Thus, the time it takes for one jobs takes various time. Recall that the
number of points increases in v and 3 and decreases in r and therefore the
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durance of a job behaves similarly. In order to avoid that we in the end
only have one job left which takes longest time, and therefore have only one
single CPU working in the end, we will treat the jobs in order approximately
decreasing in time. Thus, we start with the grid point with largest § and
and smallest r and end with the grid point with smallest # and v and largest
T

Notice that the reusing of point patterns in the outer loop, as discussed
in the end of Section 3.1, is much less feasible to implement now, since a
neighbouring grid point point pattern will often not be available and fur-
thermore we would have to use huge amount of storage room to store all
these point patterns. This requires much more coordination and some slaves
might have to wait in order to get a point pattern from a close enough other
grid point. The algorithm would become very complicated, which is base for
more mistakes and much programming time.

5.3. The parallel program with comments

In the following we run through the parallel program corresponding to the
sequentail program in Figure 3. The program is written in C++ code but
will in principle look similar in C or FORTRAN. The choise of language is only
important for the surrounding code. The code controlling the parallelising
enters as isolated procedures and some data types, and can be recognised
since they all start with the letters MPI referring to Message Passing Interface.
The MPI code is identical in C and C++ and slightly different in FORTRAN. See
Snir et al. (1996) for the exact syntax. This is also a good reference for other
procedures. We will in the following only use the most simple, which are
described below.

The structure of the parallel program is sketched in Figure 10. It starts
with a preamble including libraries and defining global variables. The user-
constructed library ppunfix5.h deals with point processes (among other it
contains the function estimate_means). The three tags defined in the pream-
ble will be used in the communication between the master and the slaves.
The integer number_of_processors will later be set to contain the number
of CPU’s working.

After the preamble follows all the procedures. In this case there are three
carrying the names master, slave, and main. A C++ program must always
contain a main procedure. This procedure is always run, whereas other pro-
cedures are only run if called. Below I will give a thorough description of
each of these procedures.

When running a parallel program then the same program, the one in
Figure 10, is run on each of the CPU’s in the Beowulf cluster. Recall that
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#include <mpi.h>
#include "ppunfixb5.h"
#include ... other libraries

#define WORKTAG 1
#define READYTAG 2
#define DIETAG 3

int number_of_processors;

void master ( void )

{
. code ...
}
void slave ( void )
{
. code ...
}
main( int argc, char *xargv )
{
. code ...
}

Figure 10: A sketch of the embarrassing parallel program.

the idea in an embarrassing parallel program is that one CPU works as master
and the others as slaves. Therefore we have a master and a slave procedure
doing these two different tasks, and basically the only thing happening in
the main procedure (which is run by every CPU) is that one CPU is told to
run the master procedure and all the other CPU’s are told to run the slave
procedure.

The main procedure is shown in Figure 11. Each CPU has an identity
number (on Beostar from 0 to 31). This number is read into the local variable
myrank by the call MPI_Comm_rank and is used to determine which one of
the two procedures master and slave is to be run by the current CPU. Only
the CPU with identity number 0 runs the master procedure and all the rest
run the slave procedure

The function MPI_init passes information from the system call of the
program. In MPI_Size sets the global parameter number_of_processors to
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main( int argc, char *xargv )
{

int myrank;

MPI_init( &argc, &argv );
MPI_Size( MPI_COMM_WORLD, &number_of_processors );
MPI_Comm_rank( MPI_COMM_WORLD, &myrank );

if ( myrank == 0 )
master () ;

else
slave();

MPI_Finalize();
Figure 11: The main procedure of the parallel program from Figure 10.

the number of processors (CPU’s). Beostar has 32.

In the end, when the current CPU has finished running either the mas-
ter or the slave procedure, it returns to the main procedure and the whole
program is shut down by calling MPI_Finalize.

Notice that this is the typical structure of an embarrassing parallel pro-
gram.

Two central MPI procedures

In the following we run through the master and the slave procedures. First
we consider the two most central commands in the communication, a send
and a receive function,

MPI_Send( BUF, COUNT, DATATYPE, DEST, TAG, COMM, IEERROR )
MPI_Recv( BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS )

The three first entries describes what is sent/received and where it can be
found. COUNT (integer) entries of type DATATYPE are sent/received and can be
found in the memory from place BUF which is a pointer. DATATYPE is a MPI
datatype, see Snir et al. (1996, p. 19), we are going to use MPI_DOUBLE which
is a real number. Basically, what we put at the place BUF is the name of a
vector of length COUNT and type that corresponds to DATATYPE (i.e. DOUBLE
in our case).

DEST and SOURCE (integers) are the source and the destination of the
message (identity number of the CPU).
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TAG (integer) is a tag used in the communication. To make the program
easier to read, we have defined some tag names as aliases for integers in the
preamble, see Figure 10.

COMM is a communicator ...

...IEERROR ...

The variable STATUS of type MPI_Status records various status variables.
Some functions come with this type. The ones we are going to use are
MPI_SOURCE which returns the identity number of the CPU from whom the
message was received, and MPI_TAG which returns the tag that was received.

The master procedure
Thus, one CPU (the one with identity number 0) is the master and the other
ones are slaves working for the master. The purpose of the master is to
allocate the work and the purpose of the slaves is to do the actual work.
The master communicates with the slaves, telling the slaves what to do and
collects the results of the work. It keeps track on which work in the stack of
work (in this case a three dimensional grid of (3, ,r) values) that have been
performed and which still needs to be done. Finally, the master will write
all the results on a file.

The master procedure is given in Figure 12. Below follow comments to
the code where numbers in < > are used as references.

<1> First the grid is initialized. The start and end-values and step-size
between grid points are given for each of the parameters 3, v and r. Then
the integer gridsize is set to be the total number of grid points.

<2> A matrix named alldata of dimensions gridsizex6 and a vector
named gridorder of length gridsize are created. Each row of alldata is
of the form

alldatali]l = (i, 8, v, r, Eg,,n(X) , Eg,rs(X) )

The first four places are initialized at present time and later the slaves will
compute the last two values. The first column contains the index number.
This is such that we quickly can find the right row again when a slave returns
a vector with a done job.

The vector gridorder contains the integers 1, ...,gridsize. It controls
the order in which to allocate the jobs of alldata, see Section 5.2. Thus,
the j’th job to be allocated is alldatal[gridorder[jl].

<3> The variable status of type MPI_Status was explained above. The
vector package is a temporary container for information received from the
slaves. It is also used as dummy message from the master to the slaves.
The integer gridcount keeps track on how far in the grid we have come
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and number_of_alive_nodes is the number of slaves that are still working,
which is initialized to be the number of CPU’s minus 1 (the master).

<4> First we send a dummy message to each slave just telling the slaves
to return the tag READYTAG.

<5> Then we run through the grid and assign jobs to the slaves until there
is no more work. A slave is killed and number_of_alive_nodes is counted 1
down when there are no more grid points.

<6> In each loop we first receive something from the slave.

<7> If the master receives a WORKTAG, then the slave has dealt with one
grid point and the result, Eg,,n(X) and Eg,,s,(X), is put into the right
place in the alldata matrix. Note that if we receive a READYTAG then the
slave has not yet performed any work. The last tag, DIETAG, is never received.

<8> If there are no more undone grid points, then the waiting slave is
told to terminate and we count the number of alive slaves one down.

<9> Else, we send the next job in the stack of work, the grid point values in
alldatalgridorder[gridcount]], to the slave and count the grid-counter
one up. Note that we send work regardless of which tag we have received
from the slave. There are three tags READYTAG, WORKTAG and DIETAG. The
latter is never received but only send to the slaves ordering it to terminate.
Receiving the first two, then the slave is ready to do another job.

void master ( void )
{

. code: initialize grid <1> ...

double alldatal[gridsize] [6];
int gridorder[gridsize];

. code: create grid (alldata and gridorder) <2> ...
MPI_Status status; // <3>
double packagel[6];
int gridcount = 0;

int number_of_alive_nodes = number_of_processors - 1;

for (i = 1; i < number_of_processors; i++ ) // <4>
MPI_Send/( package, 6, MPI_DOUBLE, i, READYTAG, MPI_COMM_WORLD) ;

Figure 12: Continues on the following page. The master procedure of the parallel program
in Figure 10.
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while ( number_of_alive_nodes > 0 ) // <5>
{
MPI_Recv( package, 6, MPI_DOUBLE, MPI_ANY_SOURCE,
MPI_ANY_TAG, MPI_COMM_WORLD, &status); // <6>

if ( status.MPI_TAG == WORKTAG )
{

. code: save results from slave <7> ...

}

if ( gridcount >= gridsize ) // <8>
{
MPI_Send( package, 6, MPI_DOUBLE, status.MPI_SOURCE,
DIETAG, MPI_COMM_WORLD) ;
number_of_alive_nodes—-;
}
else // <9>
{
MPI_Send( alldatal[gridorder[gridcount]], 6, MPI_DOUBLE,
status.MPI_SOURCE, WORKTAG, MPI_COMM_WORLD) ;
gridcount++;

}

. code: write results to file <10> ...

return(); // <11>
}

Figure 12: Continued from previous page. The master procedure of the parallel program
in Figure 10.

<10> Now, all grid points have been treated and we can save the results
to a file.

<11> Finally, the master’s job is done and the current CPU returns to
the main program where it terminates.

The slave procedure

A slaves task is to do the jobs assigned by the master and report the re-
sults back. In this case a slave computes E 3, ,n(X) and Eg,,s,(X) given
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a grid point (8,,r) from the master. Recall that this is the outcome of
estimate_means.

The slave procedure is given in Figure 13 with comments following below.

<12> Initializing variables. srand48(time(0)) initializes the random-
ness (ensures that the random numbers are indeed random). The three in-
tegers nburn, nsamp, and nspac are needed for the MHBD algorithm, see
Appendix A.1. The variables beta, gamma, and r are in the beginning set
to anything. The variable pp belongs to the class straussprocess which
is defined in the library ppunfix5.h together with procedures doing various
operations on a point process. For now it is just initialized to be of dimension
2 in the unit square (default) with the given parameters.

<13> See <3> above.

<14> The slave CPU starts to work until it is told to terminate.

<15> First we receive a message from master. Notice that we only receive
from the master CPU which has identity number 0.

<16> If we have received the tag DIETAG from the master, then our task
has ended and we return to the main part of the program, where the current
CPU that was slave will terminate.

<17> If we have received the tag READYTAG from the master, then we do
nothing but answer back with a dummy message and a READYTAG, see <4>
and <7> above.

<18> In the last case, if we have received the tag WORKTAG from the master,
then the master has sent a grid point which we have to work on.

<19> The first three functions initialize the parameters (3, ~,r) to be the
values received from the master,

(8,7,r) = ( package[1], packagel[2], packagel[3] )

The means Eg,,n(X) and Eg,,s.(X) are estimated by estimate_means
and the results are put into the last two entries of the vector package.

Notice that these 4 lines, if surrounded by a loop running through the grid,
basically constitutes the sequential program, see Figure 3. Thus, in order to
solve another similar problem, these four lines is therefore (in principle) what
needs to be modified. The rest of all the code just allocate the grid point
values.

<20> Finally we send the result back to the master (CPU number 0)
together with the tag WORKTAG telling the master “I have produced a result
and am ready for more work”.
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void slave (void)

{

srand48 (time(0)); // <12>

int nburn = 50000, nsamp = 200, nspac = 1000;

double beta = 700, gamma = 0.1, r = 0.01; // dummies
straussprocess *pp;

pPp = new straussprocess(2,beta,gamma,r) ;

MPI_Status status; // <13>
double packagel[6];

while ( true ) // <14>
{
MPI_Recv( package, 6, MPI_DOUBLE, O,
MPI_ANY_TAG, MPI_COMM_WORLD, &status ); // <15>

if ( status.MPI_TAG
return();

DIETAG ) // <16>

if ( status.MPI_TAG == READYTAG ) // <17>
MPI_Send(package, 6, MPI_DOUBLE, 0, READYTAG, MPI_COMM_WORLD);

if ( status.MPI_TAG WORKTAG ) // <18>

{
pp —> resetBeta(package[1]); // <19>
pp —> resetGamma(package[2]);
pp —> initRelafst(package[3]);
pp —-> estimate_means(nburn, nsamp, nspac, packagel[4], package([5]);

MPI_Send( package, 6, MPI_DOUBLE, O,
WORKTAG, MPI_COMM_WORLD ); // <20>

Figure 13: The slave procedure of the parallel program in Figure 10.
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6. Results of the investigations

In Figure 5 the difference between two runs with r» = 0.05 fixed were plotted.
These data were obtained from running the sequential program and the par-
allel program, respectively. Thus, as a first check, we observe that we obtain
the same results as those from the sequential program (apart from random
fluctuations).

The surfaces can be plotted for each value of r in the grid as those for
r = 0.05 fixed in the upper plots of Figure 4. By running these plots as
an animation with r as the time, we get moving surfaces. We observe that
the movements are smooth. In Figure 14 the loess estimated surfaces (c.f.
Appendix B) of the means have been plotted for the 7 values 0.03, 0.04, 0.05,
0.06, and 0.07.

Both means increase in 4 and in 7. For r increasing, the number of neigh-
bours explode for both 3 large and ~ large. This is expected since given the
number of points, then the larger the r, the more neighbours there are simply
because it is more likely that two points are neighbours. In the extreme case
where r > 1/2 then all points are neighbours, s(z) = in(z)(n(z) — 1). Thus,
the number of neighbours is quadratic in the number of points.

For 7 = 0 and for v = 1 we have the Poisson process and E g, ,n(X) = f3,
c.f. (3). Thus, the backline of the plot showing the mean number of points
is always fixed as the straight line. For r = 0 the surface is the plane
(8,7) — B and for r increasing, the plot falls down for small 7 values and
large 3 values. This is because there is very strong inhibition if v small and
the model therefore favours point patterns where very few pairs of points are
closer than r apart. Thus, when r increases, there is less and less room for
the points and there will therefore be fewer points. The effects of v small
implying s,.(z) small dominates the effect of § large implying n(z) large.
This phenomenon is stronger the smaller the v. And therefore we also see
that the neighbour mean plot is still close to 0 for small v values even when
r is very large. The model just fix the 'problem’ with a large r by having
few points in the realizations.

6.1. Simulation experiment
The best way to check the result is to make a simulation experiment and
check that the parameters put into the experiment are close to those ob-
tained by using the tabulated data for maximum likelihood estimation of the
parameters.

The simulated data is the Strauss point pattern from Figure 1 with pa-
rameters (5,v,7) = (200,0.1,0.05). We want to estimate the parameters
(8,7) and do this by solving the equations (4). The number of points in the
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pattern is n(z) = 95. The number of neighbours depends on r. In Figure 14
we have plotted the loess estimated surfaces for the means for the r values
0.03, 0.04, 0.05, 0.06, and 0.07. Furthermore, the two level curves corre-
sponding to the observed values of n(z) and s,(z) are plotted. These level
curves are thereby the solution sets to the two equations (4) and the point
where the curves intersect solves both equations and is thereby the maxi-
mum likelihood estimate (3(r),#(r)). As an example, for r = 0.03 we have
(n(z), sr(z)) = (95,1) and then the level curve for Eg,,n(X) = 95 and the
level curve Eg, s, (X) =1 are plotted. The curves intersect in (122,0.075).

It is interesting to notice that the maximum likelihood estimate is close
to the true value when r = 0.05, the true value. Thereby it seems that the
tabulated data are correct — at least in this particular area.

Furthermore, we see that the maximum likelihood estimate does not
change very much for » < 0.05 but changes drastically for » > 0.05. This
is of course due to the fact that the number of neighbours is very small and
have a very limited range when making r smaller, whereas it can increase
explosively for r larger. It could be interesting to make similar experiments
for other point patterns where the true value of ~y is larger such that there
is more room for neighbours for values above the true r as well as for values
below.

7. Discussion

7.1. The case where X 1is not the unit square

In this work we have restricted attention to the case where X is the unit
square. The mean functions (??) have been tabulated when X is a Strauss
point process in the unit square. If then instead X = (0;a) x (0;0), a,b > 0, is
a product set of the plane which is not necessarily the unit square, do we then
have to tabulate a new table in order to find the means? The answer is no.
We have following result which is a direct consequence of the transformation
result for point processes (Jensen and Nielsen, 2000, Proposition 3.2), see
Appendix D.

Corollary 1 Let X be a Strauss point process on X = (0;1) x (0;1) with
parameters (B,7v,r). Then'Y = aX is a Strauss point process on (0; a) x (0; a)
with parameters (a%, v, ar).

Thereby the means behave similarly for different sets. Furthermore max-
imum likelihood estimation can be based on the results from the table based
on the unit square. Thus, suppose that we have observed a point pattern
in the set (0;a) x (0;a). Then we scale the point pattern with a factor a
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and estimate the parameters in the scaled point pattern z/a. The maximum
likelihood of the parameters based on the original observed point pattern x

is then .
5 o o Bo . .
(57% T) = (;:’7070'710

where (BO, J0, 7o) is the maximum likelihood estimate based on z/a.

Notice that when scaling the point pattern in the unit square with a
factor a then all the distances between the points are scaled with a factor a,
thus, it is intuitively evident that also the value of r is scaled with a factor a.
Likewise, we can think of §# controlling the intensity, the number of points per
unit area. Thus, scaling the point pattern means that the number of points
per unit area is a factor 1/a? smaller since the total area is a? larger. The
parameter y controls the strength of the interaction which is not changed by
the scaling. Such considerations are the main concepts behind the scaling
approach presented in Hahn et al. (2001).

Suppose now that we have observed a point pattern x in (0;a) x (0;b).
Then scale  with a factor ¢ = v/ab such that the area of the scaled set
is 1. Again we find the maximum likelihood estimate (3y,%0,7o) based on
the scaled point pattern z/v/ab, and since the area is 1 and n(z) and s,(z)
depend on the relative size but not dimensions (disregard edge effects) then
we can use the results for the unit square. The maximum likelihood estimates
based on x is then

(Ba;)\/a 72) = (%:&O:M’FO> .

7.2. Future work
As discussed in Section 6.1, further studies about the maximum likelihood
estimation could be interesting. Perfect simulation could be implemented in
order to obtain better sampling as discussed in Section 3.1.

It is also interesting to find out whether the model can be reparametrized
such that fewer parameters are sufficient. Ute Hahn suggests to use (372, 7).

Other issues of interest are to do similar investigations for other interac-
tion models and models allowing for inhomogeneity.

Furthermore we need to incorporate edge effects since the true number of
neighbours might also depend on the points outside the observation window.
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A. Simulating in point process models

The density of a point process is intractable. Following Geyer (1999), let
hy(z) be the explicitly known part of the density parametrized by ¢ € ¥,
then the density is of the form

where
() = / hy () T1(d)

is an integral over all possible point patterns with respect to the probability
measure of the unit rate Poisson point process. This integral can be expressed
as an infinite sum of multiple integrals over X with respect to the usual
Lebesgue measure

> 1
— —area(X) — ... .
/QX hy()TI(dz) = 3 e n!/X /Xh¢({a:1,...,xn})dx1 da,,

n=0

However, it can still not be computed explicitly or even approximated. The
way we deal with point processes is then to base everything in interest on
ratios of densities.
There are now two possibilities. Either the parameter is the same or it is
not. In the first case,
fy(z) _ hy(z)

fow) — hy(y)’

and the ratio is explicitly expressed. Such ratios are used when we want to
simulate a realization from the model with parameter ). Then we construct
a Markov chain and build the transition probabilities on such ratios, see Ap-
pendix A.1 where the Metropolis-Hastings birth-death algorithm is described.
Thus, we are now able to simulate from the density and we can therefore
approximate statistics such as means and variances by sample means and
variances,

m

Eyg(X) = % > gl@),

=1
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where x4, ..., z,, are samples from the density with parameter .
In the second case, when the parameter v in the density ratio are different

we have
Fol@) _ e(0) hulw) _ o holX) hu(2) -
fo(z) () ho(x) Y hy(X) ho(z)’
where for 1) and 6 close, the mean can be approximated by the sample mean
over realizations from the model with parameter ¢, see e.g. Geyer (1999) In
cases where the parameters are not sufficiently close, a bridge can be used,
cf. Gelman and Meng (1998).
Ratios of the form (7) are used in Likelihood inference, where the Likeli-
hood function is computed up to a fixed constant

_ Liz) _ ful)
L(thosz)  fyo(2)
Notice that in the Strauss point process the parameters # and 7y can be

estimated by solving equations involving means, cf. (??), however, in order
to estimate the parameter r, we need to compute the Likelihood function.

L(¢;2)

A.1. The Metropolis-Hastings birth-death algorithm
The Metropolis-Hastings birth-death algorithm is described in e.g. Mgller
(1999, Page 150). The algorithm is iterative and starts with the empty point
configuration z = (). Then we update the configuration by adding a point,
deleting a point, or do nothing. If the density f is a Markov density, c.f.
e.g. 7 then the series of point patterns constitutes a Markov chain with
distribution that converges towards f. Thus, running the chain infinitely, we
end up with a point pattern with density f. However, in general the chain
will reach equilibrium after a large but finite transitions (burn-in) and we
can therefore stop the chain after, say nburn, transitions and then the point
pattern can be considered to be a realization of the process with density f.
A simple, often used, version of the algorithm is to do as follows in each
of the transitions. Let xbe the current state of the Markov chain,

e With probability 0.5 we propose to add a point.
A point £ is chosen uniformly random in X
— With probability £ szi)f) /:f&a)(fl) the state is changed to z U {¢}
— Else the state remains x

e Else we propose to delete a point.
A point £ is chosen uniformly random among the points in

— With probability £ J(f(”;? A:Z(:Z)X) the state is changed to z\{{}
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— Else the state remains z

For the Strauss point process on the unit square we have,

f@\8) nl@) _ n()
f(x) Area(X) ~ pyE)’

flzU&) Area(X) _ By
@ w@+1 - a1

and

where

sGa)= > 1(lE—nll <)

nex\§

is the number of points in z which are closer than r units away from &.

In Figure 15 a program for a transition of above form is sketched. Thus,
the lines “run z 1 step in MHBD algorithm” in the programs in Figures 2
and 3 can be replaced by makeMHBDstep() ;. Notice that lines 4-6 in Figure
3 constitutes the Metropolis-Hastings Birth-Death algorithm.

The function makeMHBDstep works as described above. The call drand48()
returns a uniformly distributed real number in (0;1). Thus, with probability
0.5 we enter the first part of the if...else statement. The vector data is
a vector with entries of the class point and the current point configuration
occupies the places 0, ... ,n—1. Thus, the entry n is set to hold the proposed
point and if we accept to add the point, then the number of points is just
counted up by 1 (n++ means n=n+1). The function unifpoint() is a member
function of the class point and makes the current point uniform random in
X.

In the second half of the if...else statement we propose to delete one
of the existing points (notice that if n is 0, then the acceptance probability is
0 and we keep the empty point configuration). The integer etaIndex is set
to be uniformly among the integers 0, ... n—1. Thus, the point we propose
to delete is the point from data with index etaIndex. If we accept to delete
this point, it is replaced by last data point (index n-1) and n is counted 1
down.

The function acceptProb falls in two parts. The point to be added or
deleted is contained at place j of data. If j equals n then we are in the
process of adding a point, and otherwise the point in question is one of the
points in the realization and we know that we are proposing to delete a point.
In this way we can return the proper accept probabilities.

B. The loess algorithm

The loess algorithm is a method for predicting function values using local
regression based on observed data.
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void pointprocess :: makeMHBDstep ( void )

{
if ( drand48() > 0.5 )
{
// PROPOSAL: ADD A UNIFORMLY CHOSEN POINT TO data
datal[n] .unifpoint();
if ( acceptProb( n ) > drand48() )
n++;
}
else
{
// PROPOSAL: DELETE A UNIFORMLY CHOSEN POINT FROM data
if (n>0)
{
int etaIndex = (int) (drand48()*n);
if ( acceptProb( etalndex ) > drand48() )
{
dataletaIndex] .replaceWith( data[n-1] );
n--;
}
}
}
}
double pointprocess :: acceptProb( int j )
{
if ( j ==n) // CASE: ADDING A POINT
f(dataUdataln]) Area(X) ,
return f(data) n+1 °?
else // CASE: DELETING A POINT
return f(data\data[i]) n .
3 f(data) Area(X)?

Figure 15: One step in a Metropolis-Hastings birth-death algorithm. The current point
configuration is always the indexes 0...n—1 of the vector data with entries from the class
point.
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Let X bea..... space and let z1,...,x, € X. Suppose that for each x; we
have observed a value y;. We suppose that there exist an underlying function
f describing data such that

yi = f(@:) + e,

where € is a stochastic error.

Given a point x € X, the loess algorithm is now a method for determining
f(z) based on the observed data (z;,v;),i=1,...,n.

Loess has two parameters o > 0 and A € {1,2}. We suppose that o < 1.
Then it determines the percentage of data points used in the prediction, thus,
the an data points with xz; closest to x will be used in the prediction with a
weight w;(x) increasing in the distance from z.

The second parameter, A, determines whether the prediction is based on
linear or quadratic regression. Thus,

~

f@)=a+br+cz® or f(z)=a+ bz

The estimation of the regression coefficients are now based on the weighted
least-squares, i.e. minimizing the variance

zwi(a:)(yi —a — bx; — cx3)?,
i=1

where ¢ = 0 if A = 1. See furthermore Cleveland (1993, Section 3.2) for very
nice graphical as well as mathematical explanations.

Notice that « serves as a global smoothing parameter whereas A is a local
smoothing parameter.

At this time we use the implementation in the statistical software package
Splus.

The predicted values of the means were computed in the same (3, y) grid
points using loess with parameters o = 0.1 and A\ = 2.

C. Using Beostar
Maske et afsnit med hvordan praktisk kgrer et parallelt program pa Beostar: OBS
> lamboot

etc.
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D. Scaling a Strauss point process

Let X be a Strauss point process on X = (0;1) x (0;1) with parameters
(8,7,r), i.e. density of the form (1). Using the transformation result Jensen
and Nielsen (2000, Proposition 3.2) with h(n) = an, we get that Y = h(X) =
aX is a point process on Y = h(X) = (0;a) x (0;a) with density

r(y) = fx(7(y))era e TT ht (n

ney

. ¥ 1 n(y)
= ¢(B8,7,7)” I@n(y/a),ysr(y/a)earea(y)—area( ) <$>

ﬂ n(y)
— C(ﬂ,’)/, ,r,)—lea,rea,(y)—area()() (_) ,YSar(y)

a?

ﬂ -1 6 n(y) .
= ¢ (E’,Y’ ar E ,Yar(y)’

where y € 2y (the set of point patterns in J). Thus, Y = aX is a Strauss
process with parameters (a%,% ar). The last equality is shown using the
extension formula for the Poisson point process, see Lieshout (2000, ...), and
the coarea formula, see Jensen (1998, ...).

c(B,7,7) = Br@y @ (d)

QX

— —area(X / /ﬂn Sr {wla 7$"})d$1 d

— Ze—area()( / /ﬂn sr({h 71 (@1)ysh ™ H(zn)})

Ny - - Jh N (z,)day - - - day,

— Z e—area(X / / IBTL ST({ZEl/a, axn/a}) ( 12> dxl PP d.Tn
y a

— earea(y) area(X

n
Z efarea(y / .. ./ ( ﬂ ) f}/sl”‘({:tl 7777 w"})dl-l .« .. dx
y \@? "
— area —area(X ( ) Sar(I)H(dx)

_ earea(y) area(X)C (_ v CLT)
a27 bl
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